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It is proved that L"'(GIH) does not contain any proper G-invariant closed
subspaces of finite codimension, where the hypotheses are that G is a locally
compact group, H a closed subgroup such that G/H is compact, and such that
J G iff * J H , where J denotes the modular function of the group involved.

THEOREM 1. Let G be a locally compact group and let ]{ be a closed
subgroup such that GIH is compact. Suppose there is a Pn E H for which
LlH(po) cF Lle(po), where Ll H and Lie are the modular functions of Hand G,
respectively. Suppose W is a closed subspace o{ (complex) L"'(GIH) that is
invariant under the natural action ofG on L"(GIH) and such that W has finite
codimensioll in L"'(GIH). Then W c= L"(GjH).

This theorem overlaps a result [5, Theorem I] of Rubel and Shields which
considers invariant subspaces of L"'(T), where T == {z: i z i 0.= I} is the unit
circle, under the action of the Mobius group M of all maps

" iA Z - Zo \ R - ~ .- IfL . Z r-+ e -1--::.-:' 1\ iCc 'i -0 I <, .
-- Zn.o

Here, G ~ M is isomorphic to PSL(2, R), and is unimodular because it is
simple. Let H be the subgroup of all elements of G that leave the point Z == 1
fixed. Because G is transitive, we see that GI H may be taken as T, and G acts
on GIH the way M acts on T. Now H is isomorphic to the group of matrices
of the form,

a> 0, b real,
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so that [1, Chapter 7, p. 84] LJ/{(m) c=, a2
• Hence the considerations of

[5, Theorem 1] satisfy the hypotheses of our Theorem 1. However [5]
considers a large class of subspaces of [aC( T), while we restrict our attention
to U(T) itself.

Our theorem is closely related to a theorem of Weil [6, p. 45] on the
existence of invariant measures; where it is proved that the condition that LJ e
coincide with LJ/{ on H is necessary and sufficient that C/H possess an
invariant countably additive Borel measure. Our theorem may be considered
as a generalization to the case of fjnitely additive measures, when C/H is
compact. However when C/H is not compact, there may exist finitely additive
invariant means even when countably additive ones do not exist. For example,
when C is solvable, it is known [2, Theorem 1.2. I, p. 5; Theorem 1.2.6. p. 8;
Theorem 2.2.1, p. 26] to be amenable, so that if H is a closed subgroup, then
Ci H admits an invariant mean.

To say that a locally compact group is amenable is to say that there exists
an invariant mean on L"(C). For example, let

I
l. ('OX- Y) IC= I :x>O,yreal l,

H = 1(~ ~): x > 0(.

Then C is solvable, LJ e III # LJIl and C/H admits an invariant mean. To show
that we need LJ e III # LJ/{, take C == Rand H = Z so that C/H = T,
where G acts via rotation. Any character of T gives rise to an invariant
subspace of codimension 1. In [5, Theorem 2], it was shown that there are
actually invariant subspaces of codimension I in L'''(T) that contain all the
continuous functions. So the conditions on the modular functions and on the
compactness of G/H are each needed.

After we proved Theorem I, H. Furstenberg has found a different proof.

Proof of the Theorem. We suppose here only that C is a locally compact
group and that H is a closed subgroup of C. By Cc(C) we denote the space
of all continuous complex-valued functions on G with compact support.
The notions Cc(G/H) and Lc"(CjH) are similarly used to denote compact
support of the functions involved. If fL is a linear functional on Cc(G/H) then
r(p)fL, for p E H, means the right translate of fL by p, i.e.,

For x E C and fL as before, we mean by x . fL the functional
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fAt) f(x It).

LEMMA I. Let fLl' IL 2 , ... , 11N he flolll1egaliue linear jilllclionals on Cc(G)
such thai

(i) rep) IL;

(ii) x· ILi

Llu(P)fLi,i 1,2, ... ,N.

M L;'=1 fLj ,for all x E G,

where M is a constant. It" LI u(rJo)

for all i 1,2..... N.
LI r;( [io) for some Po H, then IL; o

Proof Choose such a Po and let w be any compact neighborhood in G
of Po . Let Go be the subgroup of G generated by w, and let lIo Go n lJ.
Then Gu and lIo are open (and hence closed) subgroups of G and lI,
respectively. So LI(; LI(;" on G" and L1 11 Ll u" on lIo . Note that Go is
a-compact. The restrictions of the IL; to C( Go) satisfy the conditions (i)
and (ii). Since we may take w to contain any given compact set, the result is
proved if we can prove it for Gil' In short. we may assume without loss of
generality that G is IT-compact, and we do so. Let A L 11, . Then Ais fjnite.
and for M' /11M we have

x· A M'A.

So by a theorem of Mackey [3, Theorem 1.1, p. 106], ,\ is absolutely
continuous with respect to Haar measure on G, since the null space of A is
translation invariant. Hence by the Radon-Nikodym theorem [4, p. 238] there
exists a locally summable function' on G such that

AU) - J'(x)f(x) dx.

for fE C('(G). The relation x . A M'A implies that for each x, ((xly)
M' ,( y) for almost all y. So by Tonelli's theorem [4, p. 270]. there exists y" c: G
such that ((r1yo) M' ,( Yo) for almost all x. Thus I: ( 00. Relation (i)
now implies that,

Hence A = 0 and so each fLi O.

so that II ( o.

LEMMA 2. Let AI' A2 '00" AN be a finite number of nonnegative linear
functionals on C e( G! lI) such that

N

X . Ai M I ,\"
; ..... 1
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for all x E G. If; for some Po E H,

then 1\ = 0 for al1 j.

Proof Let!-ti be the linear functionals defined on Cc(G) by

where

J(xH) = f f (xh) dill.
If
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Now [6, p. 43] ff-->. J is a linear and onto map of Cc(G) onto Cc(G/H), so
A, ~= 0 if !-ti = O. But the !-ti satisfy the hypotheses of Lemma I, and we are
done.

Proof of the Theorem (Completed). Let WJ be the space of continuous
linear functionals on uo(G/H) that annihilate W. Let VI , V2 , ... , I'N be a basis
for W-l. The Vi are continuous linear functionals on U"(G/H). There exist
Ii E LQ(G/H), i = 1,2,... , N such that v;(fj) = ou. It follows that

N

X . Vi = I Cj1(x)Vj,
j~l

where

and the Cji are clearly bounded, say

I Cji(x) I ~ M, XEG.

Let I Vj I denote the variation of V considered as a linear functional on
LQ(G/H) and let Aj be the restriction of I Vj I to Cc(G/H).

In symbols, Aj = I Vj I Ic,(GIH) . Now

x . Ai = i x . Vi I !c,(G/If) = II Cj,(X)Vi I Icc (G//f)

By Lemma 2, Aj = 0 for all j. Therefore, W J LcQ(G/H) = U)(G/H) since
G/H is supposed compact, and the theorem is proved.

We mention that if we do not assume that G/H is compact, we may still
conclude under the remaining hypotheses of Theorem I that WJ Lc'D(G/H).
We remark that Theorem 1 implies that if G is a locally compact group for
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which there exists a closed subgroup H satisfying the hypotheses of
Theorem I, then G is not amenable. Consequently we have a new proof that
a semisimple Lie group is not amenable.

We conclude with a problem. Suppose, under the hypotheses of Theorem I
that E and F are closed invariant subspaces of L '(G! H), that E C F,
C(GIH) F, and that F is a module over C(GlH). If dim FIE < 00. does it
follow that E F?
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